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CONCERNING THE /-CONJECTURE FOR DISCRETE
SEMIGROUPS
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(Communicated by J. Goldstein)

ABSTRACT. For 2 < p < oo, it is well-known that if G is a discrete group, then
the convolution product ¢ * 1) exists for all ¢,1 € ¢P(G) if and only if G is finite.
Here, we present an improvement of this result for an arbitrary discrete semigroup
in terms of semifinite semigroups.

1. INTRODUCTION

The LP-conjecture was first formulated for a locally compact group G by Ra-
jagopalan in his Ph.D. thesis in 1963 as follows: for 1 < p < oo, the convolution
product ¢ x ¢ exists and belongs to LP(G) for all ¢,v € LP(G) if and only if G is
compact. However, the first result related to this conjecture is due to Zelazko [19]
and Urbanik [18] in 1961; they proved that the conjecture is true for all locally
compact abelian groups. The truth of the conjecture has been established for p > 2
by Zelazko [20] and Rajagopalan [12] independently; see also Rajagopalan’s works
[11] for the case where p > 2 and G is discrete, [12] for the case where p = 2 and G
is totally disconnected, and [13] for the case where p > 1 and G is either nilpotent
or a semidirect product of two locally compact groups. In the joint work [14], they
showed that the conjecture is true for p > 1 and amenable groups; this result can
be also found in Greenleaf’s book [5]. Rickert [16] confirmed the conjecture for
p = 2. For related results on the subject see also Crombez [2] and [3], Gaudet and
Gamlen [4], Johnson [7], Kunze and Stein [8], Lohoue [9], Milnes [10], Rickert
[15], and Zelazko [21]. Finally, in 1990, Saeki [17] gave an affirmative answer to
the conjecture by a completely self-contained proof.

In [1], it was considered only the property that ¢ exists for all ¢, ¢ € LP(G)
of a locally compact group G and proved that for 2 < p < 0o, ¢ * ¥ exists for all
o, € LP(G) if and only if G is compact. For a discrete group G and 2 < p < oo,
it follows that ¢ * v exists for all ¢, v € ¢P(G) if and only if G is finite; moreover,
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P(G) C £2(G) for 1 < p < 2, and hence ¢ * 1 exists for all ¢, € (P(G) by the
Holder inequality.

Our aim in this work is to consider this problem in the setting of discrete
semigroups. In order to this end, we first introduce and study a class of semigroups
called semifinite semigroups. Next, for 2 < p < oo, we obtain a necessary and
sufficient condition for that ¢ 1) exists for all ¢, € £7(S) in terms of this class of
semigroups. However, for 1 < p < 2, we are not able to characterize semigroups S
for which ¢ * v exists for all ¢, 1 € P(S); that is, the following question remains
open.

Question. Let 1 < p < 2. For which semigroups 5, the convolution product
¢ x 1) exists for all ¢, ¢ € P(S)?

2. SEMIFINITE SEMIGROUPS

In this section, we introduce and study a large class of semigroups.

Definitions 2.1. We say that a semigroup S is left semifinite if the set {s €
S : s~ #£ (0} is finite for all t € S, where st = {r € S : sr =t }; similarly, we
say that S is right semifinite if the set {s € S : st—! # (0} is finite for all t € S,
where st™! = {r € S : s = rt}. A left and right semifinite semigroup is simply
said to be semifinite semigroup.

Let us point out that a left semifinite semigroup is not necessarily right semifi-
nite; for example consider left zero semigroups. Similarly, a left semifinite semi-
group is not necessarily left weakly cancellative; recall that S is called left (resp.
right) weakly cancellative if s71¢ (resp. st~ !) is finite for all 5,# € S. Furthermore,
a left or right weakly cancellative semigroup is not necessarily left semifinite.

Our next result gives the only direct relation between these concepts which is
needed in the sequel.

Proposition 2.2. Any left semifinite semigroup is right weakly cancellative.

Proof. Let S be a left semifinite semigroup. Then tr=! C {s € S:s7 't # ()} for
all t,r € S. In particular, tr—! is finite for all ¢, € S as required. O

Proposition 2.2 and its dual yield the following result.

Corollary 2.3. Any semifinite semigroup is weakly cancellative; i.e., left and
right weakly cancellative.

Let us remark that any infinite group is cancellative and of course weakly can-
cellative, but not semifinite. So, the converse of Corollary 2.3 is not true. How-
ever, we have the following result which describes the interaction between these
concepts.

Theorem 2.4. Let S be a semigroup. Then the following assertions are equiv-
alent.

(a) S is left weakly cancellative and left semifinite.

(b) S is right weakly cancellative and right semifinite.

(c) S is semifinite.
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Proof. Tt is sufficient to show that (a) implies (b). Suppose that (a) holds. By
Proposition 2.2, S is right weakly cancellative. So, we only need to show that S
is right semifinite; suppose on the contrary that there exists s € S and an infinite
subset T of S such that st~ # () for all t € T. Since S is left weakly cancellative,

it follows that
(st :iteTy}=0

for all infinite subsets Ty of T'. By induction, there exists a sequence (t,,) of distinct
elements of S such that st; 1, ¢ st;' U...Ust; ! for all n > 1. So, we may find an
infinite subset {r, : n > 1} of S such that r, € st,!. Therefore, t, € r,'s, and
thus the set {r € S : r~1s # 0} is infinite; this is a contradiction. O

We now give some examples of semifinite semigroups.

Example 2.5. (a) Let S be the semigroup [0,1] with the operation zy =
min{z +y,1} for all z,y € [0,1]. Then S is not semifinite; indeed y~'1 = [1 —y, 1]
for all y € S. Also, for every x < 1, we get y ' = {x —y} fory <z and y 1z =)
otherwise.

(b) Let X be an arbitrary set, and let S be the power set P(X) of X endowed
with the union operation U. Then for every A, B € P(X), A~'B # { if and only
if A C B;in this case A7'B = {(B\ A)UC: C C A}. Hence S is semifinite
only if X is finite. But the uncountable subsemigroup F(X) of S consisting of all
finite subsets of S is semifinite.

(c) Let S be the semigroup consisting of all 2 x 2 matrices

z 0
V] wuerinuso
with the matrix multiplication. Then

y 1 r

It follows that S is not left semifinite; similarly, S is not right semifinite.

Now, we consider the subsemigroup 7 of S consisting of all of 2 x 2 matrices in
S with entries in N. Then T is left semifinite and left weakly cancellative. Now,
apply Theorem 2.4 to conclude that T is semifinite.

0] 0
{x } {Z 1];&@ if and only if rz > yz

3. EXISTENCE OF CONVOLUTION PRODUCTS

Let S be a discrete semigroup and 1 < p < oco. As usual, let /P(S) denote the
space of all complex-valued functions on S with ) __g |#(s)|P < co. For functions
¢ and ¢ on S, define

(xp)(@) = Y (s) ¥(1)
s,tES,x=st

at each point z € S? for which this makes sense, and (¢ * v)(z) := 0 for all
x € S\ S?, where 8% := {st : s,t € S}. We say that ¢ x1 exists if (¢ x1))(x) exists
for all x € S; in this case, ¢ x ¥ is called the convolution product of ¢ and .
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It is well-known that ¢ * 1 exists and belongs to £*(S) for all ¢, € ¢1(S). In
this section, we give a description for the existence of ¢ * ¢ for all ¢, ¢ € £P(S).
First, we need a lemma.

Lemma 3.1. Let S be a semigroup and 1 < p < co. If ¢ x 1 exists for all
o, € IP(S), then S is weakly cancellative.

Proof. We show that S is left weakly cancellative; a similar argument implies that
S is right weakly cancellative. Suppose on the contrary that there exist sg,zg € S
such that s; 120 is an infinite subset of S. Choose a sequence (t,) of distinct
elements in sy 'xg. Define

n if s=t,
o(s) = 1 ifs=sg
0  otherwise

It is clear that ¢ € (P(S). Since xg € S?, it follows that

(Bx)(xo)= Y. dls)ot)= D lso) ¢(t) = D> bltn);

s,teS,xp=st teS,xo=sot

hence (¢ * ¢)(x¢) = oo which is a contradiction. O

We now are ready to state and prove the main result of this paper.

Theorem 3.2. Let S be a semigroup and 2 < p < oo. Then ¢ x1 exists for all
o, € IP(S) if and only if S is semifinite.

Proof. Suppose that ¢ * ¢ exists for all ¢,¢ € ¢P(S). In view of Lemma 3.1, §
is weakly cancellative. To prove that S is semifinite, by Proposition 2.4, we only
need to show that S is left semifinite. For this end, we suppose on the contrary
that there is € S such that

X, ={seS: s 'z #0}

is an infinite subset of S. Choose s; € X,. Then there exists so € X, \ ({s1}Us] 'z)
such that

syt ¢ {s1}Usyla.
Indeed, if s 1o C {s;} Usy a for all s € X, \ ({s1} Us; '), then the set
{571x cse X, \({s1}Usyle )}

is finite. This together with that X, \ ({s;}Us] 'z ) is infinite show that there is
an infinite subset X of X, \ ({s1}Us; 'z ) such that s™'o =t~ 'z for all 5,t € X;

in particular,
m stz #£0
seX
which contradicts the weak cancellativity of S.
Inductively, there exists a sequence (s,,) of distinct elements of S with

Sn € Xz \ ({51, ,sn_l}Usfle---Us;llx)
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and

st € Xp \ ({81, ySn1}Usy e U~ Us; tyo)
for all n > 2. For each n > 1, choose

tn € syt \ ({51, 81} Us; zU---Us 1 2).

Then (t,) is a sequence of distinct elements of S. Define the function ¢ : § — C
by

1
— ifs= =t
6(s) = n ifs=ws, ors n
0

otherwise

Clearly ¢ € ¢P(S); this together with the fact that x € S§? yields

Bxo)@)= D &(s) o) =Y (sn) dltn).

s,teS, st=x

That is, (¢ * ¢)(x) does not exist, a contradiction. O

Although, a semifinite semigroup is not necessarily even countable, a discrete
group G is semifinite only if G is finite. Hence, as a result of Theorem 3.2, we have
the following corollary.

Corollary 3.3. Let G be a group and 2 < p < oco. Then ¢ x 1 exists for all
o, € LP(G) if and only if G is finite.

At the end, we present some applications of Theorem 3.2.

Example 3.4. (a) Let S be the semigroup of all real numbers with the oper-
ation st = max{s,t} for all s,¢ € R; hence s~'t = {t} for s < ¢ and s71t = (
otherwise. Then S is not semifinite. Thus for all p > 2, there are ¢, € ¢P(S)
such that ¢ * 1) does not to exist.

Now, consider the subsemigroup 7 of this semigroup consisting of all natural
numbers is semifinite. Thus ¢ * ¢ exists for all ¢, ¢ € ¢P(S) and p > 2.

(b) Let S be the semigroup of all natural numbers with general product or
plural operation. Then § is semifinite. Hence ¢ * ¢ exists for all ¢, ¢ € (P(S) and
p> 2.

(c) Let X be an arbitrary infinite set and S be the semigroup of all characteristic
functions on X endowed with the pointwise multiplication. Then for each A, B C
X we have lexg # () if and only if B C A. Hence S is not semifinite. Thus for
each p > 2, there are ¢, € ¢P(S) such that ¢ * ¢ does not to exist.
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