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θ-FUNCTION METHOD FOR A TIME-FRACTIONAL

REACTION-DIFFUSION EQUATION
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(Communicated by M. Kirane)

Abstract. In this paper, the initial-boundary-value problems with both the Dirich-

let and the Neumann boundary conditions for a nonlinear time-fractional reaction-
diffusion equation are considered. The proposed solution method consists in em-

ploying a suitable generalization of the θ-function that is constructed based on

the fundamental solution of the corresponding linear time-fractional diffusion equa-
tion. For the solutions of the initial-boundary-value problems for the time-fractional

reaction-diffusion equation, the integral equations of the Volterra type with the gen-

eralized θ-function in the kernel are obtained. These equations are useful, e.g., for
the numerical solutions of the problems under consideration.

1. Introduction

It is well known that under the usual assumptions placed on the jump probability
density functions of the diffusing microscopic particles, the underlaying diffusion
process can be modeled by the diffusion equation

(1)
∂u

∂t
−∇ · (D∇u(x, t)) = 0

that describes the substance concentration u = u(x, t), t ≥ 0, x ∈ Ω ⊆ RN , where
D = D(x, t, u) is the diffusion coefficient and ∇ is the gradient operator. This
equation can be also derived by combining the continuity equation ∂u

∂t +∇ · j = 0
and the Fick’s first law j = −D∇u(x, t), where j is the flux of the substance.

Whereas the diffusion equation (1) has been successfully applied in many areas
of physics and engineering, recently some other phenomena called anomalous
diffusion have been observed ([1, 4, 10, 23]). In the case of the classical diffusion
equation (1), the diffusive profile is connected with the Gaussian distribution.
The main feature of this process is the linear relation between the mean square
displacement of the diffusing particles and time, namely 〈x2(t)〉 = 2Dt. In the

Received 25.01.2014.
2000 Mathematics Subject Classification. Primary 26A33, 33E12, 35B45, 35B50, 35K99,

45K05.
Key words and phrases. Caputo fractional derivative, Riemann-Liouville fractional deriva-

tive, time-fractional reaction-diffusion equation, initial-value problems, initial-boundary-value
problems, fractional θ-function, nonlinear Volterra integral equations.

The second author was supported by Texas A&M MCERI JIP Project.



2 YURI LUCHKO and LIHUA ZUO

case of the anomalous diffusion, this relation is not linear anymore and can be
often written in the form 〈x2(t)〉 = Dγ t

γ with γ 6= 1.
One of the most powerful models of the anomalous diffusion is the continu-

ous time random walk model that under some realistic assumptions on the jump
probability density functions leads to the time-, space-, or time-space-fractional
diffusion and diffusion-wave equations on the large time- and space-scales (see
e.g. [2, 18, 19, 27]). In the literature, a lot of attention was given to the
initial-value problems for the linear fractional diffusion and diffusion-wave equa-
tions (see e.g. [8, 13, 14, 16, 25, 26]). A fundamental solution of the linear
one-dimensional time-fractional diffusion equation was derived in [25] in terms of
the special functions of the Wright type. In [21], a maximum principle for the
generalized multi-dimensional time-fractional diffusion equation was proved. For
some regularity results of the solutions of the time-fractional diffusion equations
we refer the reader to [29]. As to the initial-boundary-value problems for these
equations, they were analyzed in [17, 20, 21] by applying the Fourier method of
variables separation. In general, this method leads to a generalized solution in
form of a Fourier series that in some cases can be shown to be a solution in the
classical sense ([17]).

In contrast to the linear case, only few analytical results are known for the non-
linear fractional diffusion and diffusion-wave equations. One research direction
in this field is the qualitative theory of the fractional partial differential equa-
tions (see e.g. [5, 6] and references therein). In this paper, we introduce another
method for analytical treatment of the initial-boundary-value problems for a fac-
tional reaction-diffusion equation that is based on the fractional θ-function that
is constructed using the known fundamental solution of the initial-value problem
for the linear time-fractional diffusion equation. In the case of the conventional
diffusion equation, this technique is described e.g. in [3]. For the solutions of the
initial-boundary-value problems for the fractional reaction-diffusion equations, the
integral equations of the Volterra type with the fractional θ-function in the kernel
are derived. These equations can be used e.g. for the numerical treatment of the
problems under consideration.

Let us note that initial-boundary-value problems for linear and nonlinear frac-
tional partial differential equations can be numerically solved by the finite differ-
ences method (see e.g. [7, 15]) or by the finite elements method (see e.g. [11, 12]),
too. In the final section of our paper, we compare the results derived by employing
our method and the method of the finite differences.

The rest of this paper is organized as follows. In the 2nd section, a fractional
generalization of the θ-function is constructed and studied. In particular, its prop-
erties that are employed for solving the initial-boundary-value problems we are
dealing with in this paper are derived. The 3rd section is devoted to construction of
the Volterra type integral equations for the solutions of the initial-boundary-value
problems for the time-fractional reaction-diffusion equations with both Dirichlet
and Neumann boundary conditions. Finally, in the last section, some numerical
examples are presented.
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2. Fractional θα-function and its properties

We start with an initial-boundary-value problem for a linear one-dimensional frac-
tional diffusion equation in the form

∂αt u− uxx = 0, 0 < α < 1, x ∈ R, t ∈ R+

u(x, 0) = f(x), x ∈ R,
u(±∞, t) = 0, t ∈ R+,

(2)

∂αt u, 0 < α < 1 being the Caputo fractional derivative defined by

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

(t− s)−α ∂u
∂s

(x, s)ds.

Let us mention that for α = 1 the fractional Caputo derivative is defined as the
first order derivative and thus the problem (2) is just an initial-value problem for
the conventional diffusion equation:

∂tu− uxx = 0, x ∈ R, t ∈ R+

u(x, 0) = f(x), x ∈ R,
u(±∞, t) = 0, t ∈ R+.

(3)

The fundamental solution (the Green function) of the problem (2) is called a
solution to this problem with the initial condition f(x) = δ(x), where δ is the
Dirac δ-function. Let us denote the fundamental solution of the problem (2) by
Kα(x, t). Then it is known that

(4) u(x, t) =

∫ ∞
−∞

Kα(ξ, t)f(x− ξ)dξ

is a solution to the general problem (2).
Following [25, 26], the fundamental solution can be represented in the form

Kα(x, t) =
1

2
t−α/2Mα/2(|x|/tα/2), x ∈ R, t ∈ R+(5)

in terms of an auxiliary function of the Wright type that is often referred to as the
Mainardi function. The M -function is represented by

Mµ(z) := W−µ,1−µ(−z), 0 < µ < 1(6)

in terms of the Wright function that is defined as a convergent series (see e.g. [9]):

Wα,β(z) =

∞∑
k=0

zk

k!Γ(αk + β)
, α > −1, β ∈ C, z ∈ C.(7)

For µ = 1/2 (α = 1 in the equation (2)), the M -function becomes the familiar
Gaussian function:

M1/2(z) =
1√
π

exp(−z2/4).(8)

For the conventional diffusion equation (3), a method of representation of the
solutions to the boundary-value-problems for the linear and nonlinear diffusion
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equations in terms of the fundamental solutions to the initial-value problems for
the linear equations is known (see e.g. [3]). This representation is constructed in
terms of the so called θ-function.

For the reader’s convenience, some basic results regarding the conventional dif-
fusion equation are now presented. The θ-function is defined as

(9) θ(x, t) =

∞∑
m=−∞

K(x+ 2m, t),

where K is the fundamental solution to the initial-value problem for the linear
diffusion equation (3) given by

(10) K(x, t) =
1√
4πt

exp(−x
2

4t
).

The main result we are going to generalize in this paper for the case of the
fractional diffusion equation is given in the following lemma.

Lemma 2.1. Let f be a continuous function and u0, g1, g2 be piecewise con-
tinuous functions on the suitable intervals. Then the function

u(x, t) =

∫ 1

0

{θ(x− ξ, t)− θ(x+ ξ, t)}u0(ξ)dξ − 2

∫ t

0

∂θ

∂x
(x, t− τ)g1(τ)dτ+

(11)

2

∫ t

0

∂θ

∂x
(x− 1, t−τ)g2(τ)dτ +

∫ t

0

∫ 1

0

{θ(x− ξ, t− τ)− θ(x+ ξ, t− τ)}f(u(ξ, τ))dξdτ

is a solution of the following initial-boundary value problem for the reaction-
diffusion equation

ut − uxx = f(u), 0 < x < 1, t > 0

u(x, 0) = u0(x), 0 < x < 1,

u(0, t) = g1(t), u(1, t) = g2(t), t > 0.

(12)

Remark. A similar result is valid for the problem of type (12) with the Neu-
mann boundary conditions instead of the Dirichlet boundary conditions. In this
case, the terms ∂θ

∂x (x, t− τ) have to be replaced by θ(x, t− τ) in the representation
(11).

Now the main object of our paper - a fractional generalization θα of the θ-
function - is defined as follows:

θα(x, t) =

+∞∑
m=−∞

Kα(x+ 2m, t), x ∈ R, t > 0(13)

with the function Kα as in (5).
Because of the formula (8), our θα coincides with the conventional θ-function

for α = 1.
Before we start with investigation of the relevant properties of θα, some results

needed for further discussions are formulated. In the next section, we need some
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properties of the Riemann-Liouville fractional derivative Dα
a+ that for 0 < α < 1

is defined by

Dα
a+u(t) =

1

Γ(1− α)

d

dt

∫ t

a

u(s)

(t− s)α
ds.

Lemma 2.2. (Lemma 2.2 in [13]) Let u(t) ∈ AC([a, b]). Then the Riemann-
Liouville fractional derivative Dα

a+u exists almost everywhere on [a, b].

Lemma 2.3. Let f, g ∈ AC([0, b]) with f(0) = g(0) = 0 and 0 < α < 1. Then
the integration by parts formula∫ t

0

Dα
0+f(t− τ)g(τ)dτ =

∫ t

0

f(t− τ)Dα
0+g(τ)dτ(14)

holds true for t ∈ [0, b].

Proof. The proof is by direct computation. Using Lemma 2.2, the left hand
side of (14) can be transformed to the form∫ t

0

Dα
0+f(t− τ)g(τ)dτ =

∫ t

0

1

Γ(1− α)

(∫ t−τ

0

f ′(s)(
(t− τ)− s

)α ds+
f(0)

(t− τ)α

)
g(τ)dτ

=
1

Γ(1− α)

∫ t

0

∫ t−τ

0

f ′(s)g(τ)(
(t− τ)− s

)α dsdτ +
f(0)

Γ(1− α)

∫ t

0

g(τ)

(t− τ)α
dτ

=: J1

since f(0) = 0.
By the change of variables µ = t − τ and then ρ = t − µ and t − s = τ we get

the following chain of equalities:

J1 =
1

Γ(1− α)

∫ t

0

∫ µ

0

f ′(s)g(t− µ)(
µ− s

)α dsdµ =
1

Γ(1− α)

∫ t

0

∫ t

s

g(t− µ)

(µ− s)α
dµf ′(s)ds

=
f(s)

Γ(1− α)

∫ t

s

g(t− µ)

(µ− s)α
dµ
∣∣∣s=t
s=0
− 1

Γ(1− α)

∫ t

0

∂

∂s

(∫ t

s

g(t− µ)

(µ− s)α
dµ
)
f(s)ds

= − f(0)

Γ(1− α)

∫ t

0

g(t− µ)

µα
dµ+

1

Γ(1− α)

∫ t

0

∂

∂s

(∫ t−s

0

g(ρ)

(t− s− ρ)α
dρ
)
f(s)ds

=
1

Γ(1− α)

∫ t

0

∂

∂τ

(∫ τ

0

g(ρ)

(τ − ρ)α
dρ
)
f(t− τ)dτ

=

∫ t

0

f(t− τ)Dα
0+g(τ)dτ.

This completes the proof. �

Now we start with investigation of the properties of the θα-function that are
needed in the next section for our treatment of the initial-boundary-value problems
for a fractional reaction-diffusion equation.
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Lemma 2.4. The function θα(x, t) is a C∞ function in both x ∈ R and t > 0. It
is an even function with respect to the spatial variable x. Moreover, for 0 < α < 1
the relations

lim
x→0+

L
{∂θα
∂x

(x, t); s
}

= −1

2
sα−1,(15)

lim
x→0+

L
{ ∂

∂x
D1−α

0+ θα(x, t); s
}

= −1

2
,(16)

lim
t→0

θα(x, t) = 0,(17)

lim
x→1

∂θα
∂x

(x, t) = 0,∀t > 0(18)

hold true, where L denotes the Laplace transform and D1−α
0+ is the Riemann-

Liouville fractional derivative.

Proof. Using the notation rm = |x+ 2m|/tα/2, m ∈ Z, the formula (13) can be
represented in the form

θα(x, t) =

∞∑
m=−∞

1

2
t−α/2Mα/2(rm),(19)

where Mµ is defined as in (6). The asymptotic behavior of Mµ(r) as r → ∞ is
known (see e.g. [26]):

Mµ(r) ∼ Ara exp(−brc), r →∞(20)

with

A =
(

2π(1− µ)µ
1−2µ
1−µ

)−1/2
, a =

2µ− 1

2− 2µ
, b = (1− µ)µ

µ
1−µ , c =

1

1− µ
.

Now we apply the asymptotical formula (20) with µ = α/2 and r = rm to the
representation (19) of the θα-function. For 0 < α < 1, the value of µ is between 0
and 1

2 and thus for the constants in (20) the inequalities b > 0 and 1 < c < 2 hold
true. We then obtain

|θα(x, t)| <
∞∑

m=−∞

1

2
t−α/2Aram exp(−brcm) < C

∞∑
m=−∞

1

2
t−α/2Aram exp(−brm),

(21)

where C is a constant. If the inequality e−br
c
m < e−brm holds for all t > 0, then we

can simply take C = 1. For a fixed t, we can find an integer M , such that rm > 1
for all m > M and then we get e−br

c
m < e−brm . Now we split the last series in

(21) into a finite part with the indices |m| ≤ M and the remaining terms with
|m| > M . Since all terms of the series are positive, the finite part can be bounded
by a constant times the sum that contains e−brm while the remaining terms allow
the bound C = 1.

Let us denote the function t−α/2Aram exp(−brm) by um(x, t). Then for any
t0 > 0, t ≥ t0 > 0, there is an integer M such that the equality |rm+1|−|rm| = 2

tα/2
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holds if m > M . Restricting m to this range we obtain

lim
m→∞

um+1

um
= lim
m→∞

(
|x+ 2(m+ 1)|
|x+ 2m|

)a
exp

(
− 2b

tα/2

)
= exp

(
− 2b

tα/2

)
< 1

since b > 0 and t ≥ t0 > 0. Thus the series
∑∞
m=0 um(x, t) is uniformly convergent

for x ∈ R and t ≥ t0 > 0. Similarly, there exists an integer N such that for all
m < N , we have |rm−1| − |rm| = 2

tα/2
and

lim
m→−∞

um−1
um

= lim
m→−∞

(
|x+ 2(m− 1)|
|x+ 2m|

)a
exp

(
− 2b

tα/2

)
= exp

(
− 2b

tα/2

)
< 1,

so that the series
∑0
m=−∞ um(x, t) also uniformly converges for x ∈ R and t > 0.

Thus the series for θα(x, t) is uniformly convergent one for x ∈ R and t ≥ t0 >
0, too. Using the same technique, we can show that the series for all partial
derivatives of θα are also uniformly convergent for x ∈ R and t > 0 that shows
that θα is in C∞(0,∞) with respect to the time variable t and in C∞(R) with
respect to the spatial variable x.

Now we move to the proof of the relation (15). By direct calculation, for
m = 1, 2, . . . we get the relations

∂

∂x
(Kα(x+ 2m, t)) = −1

2
t−α

∞∑
k=0

(− |x+2m|
tα/2

)k

k!Γ(−α2 k + (1− α))
,

∂

∂x
(Kα(x− 2m, t)) =

1

2
t−α

∞∑
k=0

(− |x−2m|
tα/2

)k

k!Γ(−α2 k + (1− α))
.

Thus

lim
x→0+

(
∂

∂x
(Kα(x+ 2m, t)) +

∂

∂x
(Kα(x− 2m, t))) = 0.(22)

We use now the uniform convergence of the series for θα and the equality (22) to
obtain

lim
x→0+

∂θα(x, t)

∂x
= lim
x→0+

∂

∂x
(

∞∑
m=−∞

Kα(x+ 2m, t)) = lim
x→0+

∞∑
m=−∞

∂

∂x
(Kα(x+ 2m, t))

= lim
x→0+

∞∑
m=1

(
∂

∂x
(Kα(x+ 2m, t)) +

∂

∂x
(Kα(x− 2m, t))) + lim

x→0+

∂

∂x
(Kα(x, t))

= lim
x→0+

∂

∂x
(Kα(x, t)).

The last formula along with the series representation of Kα leads to the relation

lim
x→0+

∂θα(x, t)

∂x
= lim
x→0+

−1

2
t−α

∞∑
k=0

(− x
tα/2

)k

k!Γ(−α2 k + (1− α))

= lim
x→0+

−1

2
t−αW−α2 ,1−α(x, t).
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Using the Laplace transform formula (see [9])

L{t−αW−α2 ,1−α; s} = s−(1−α) exp(−|x|sα/2),

we obtain

lim
x→0+

L
{∂θα(x, t)

∂x
; s
}

= lim
x→0+

−1

2
s−(1−α) exp(−|x|sα/2) = −1

2
sα−1,

which proves formula (15).
In order to prove (16), we show that the formula

lim
x→0+

∫ t

0

∂

∂x
D1−α

0+ θα(x, t− τ)ϕ(τ)dτ = −1

2
ϕ(t)(23)

holds true for all ϕ(t) ∈ C∞0 (0,∞). By Lemma 2.2, D1−α
0+ θα(x, t) exists and

is continuous for x ∈ R and t > 0, so that the Laplace transform formula
L{Dα

0+ϕ(t); s} = sαL{ϕ(t); s} is valid because (Dα−1
0+ ϕ(t))|t=0 = 0. Applying

the Laplace transform to the left hand side of (23) and using Lemma 2.3, we
obtain the following chain of equalities

lim
x→0+

L
{∫ t

0

∂

∂x
D1−α

0+ θα(x, t− τ)ϕ(τ)dτ ; s
}

= lim
x→0+

L
{∫ t

0

∂

∂x
θα(x, t− τ)D1−α

0+ ϕ(τ)dτ ; s
}

= lim
x→0+

L
{ ∂

∂x
θα(x, t); s

}
× L

{
D1−α

0+ ϕ(t); s
}

= −1

2
sα−1 × s1−αL

{
ϕ(t); s

}
= L

{
− 1

2
ϕ(t); s

}
that immediately leads to (23).

In order to prove (17), we employ the Proposition 1 from [8] with n = 1 and
m = 0 (note that our notations are different from those used in [8], where in
particular the notation Z0 stays in place of our θα). This gives the estimate

|θα| ≤ Ct−α/2 exp(−σt−
α

2−α |x|
2

2−α ) that for t→ 0 leads to (17).
To show (18), we first calculate the value of ∂θα

∂x (x, t) at the point x = 1 for
t > 0:

∂θα
∂x

(x, t)
∣∣∣
x=1

= −1

2
t−α

∞∑
m=1

∞∑
k=0

(− |1+2m|
tα/2

)k

k!Γ(−α2 k + (1− α))

+
1

2
t−α

∞∑
m=1

∞∑
k=0

(− |1−2m|
tα/2

)k

k!Γ(−α2 k + (1− α))
− 1

2
t−α

∞∑
k=0

(− 1
tα/2

)k

k!Γ(−α2 k + (1− α))
= 0.

Thus by the continuity of ∂θα
∂x (x, t) with respect to x, we obtain

lim
x→1

∂θα
∂x

(x, t) =
∂θα
∂x

(x, t)
∣∣∣
x=1

= 0

that is the relation (18). �
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3. Initial-boundary-value problems with the Dirichlet and Neumann
boundary conditions

The θα-function introduced and studied in the previous section is now used to
derive the Volterra type integral equations for the solutions of the initial-boundary-
value problems with the Dirichlet and with the Neumann boundary conditions for
a fractional reaction-diffusion equation. First we consider the case of the Dirichlet
boundary conditions. In this case, the following result is valid:

Theorem 3.1. Let u0, g1, and g2 be piecewise continuous functions on the
suitable intervals. Then a solution u of the initial-boundary-value problem for the
fractional reaction-diffusion equation given by


∂αt u− uxx = f(u) + γ(x, t), 0 < x < 1, 0 < t < T

u(x, 0) = u0(x), 0 < x < 1,

u(0, t) = g1(t), u(1, t) = g2(t), 0 ≤ t ≤ T
(24)

can be represented in the form

u(x, t) = w(x, t) + v1(x, t) + v2(x, t) + v3(x, t)(25)

with the functions w, v1, v2, v3 given by

w(x, t) =

∫ 1

0

[
θα(x−ξ, t)− θα(x+ξ, t)

]
u0(ξ)dξ,

v1 = −2

∫ t

0

∂(D1−α
0+ θα)

∂x
(x, t−τ)g1(τ)dτ,

v2 = −2

∫ t

0

∂(D1−α
0+ θα)

∂x
(x−1, t−τ)g2(τ)dτ,

v3 =

∫ t

0

∫ 1

0

[
(D1−α

0+ θα)(x−ξ, t−τ)+(D1−α
0+ θα)(x+ξ, t−τ))

]
[f(u(ξ, τ)+γ(ξ, τ)]dξdτ.

Proof. The problem of existence and uniqueness of a solution to (24) has been
considered in [24] and we refer the interested reader to this paper for more infor-
mation. In this paper, the focus is on the solution formula (25).

By definition of the θα-function, we have

∂αt w =

∫ 1

0

[
∂αt θα(x+ ξ, t) + ∂αt θα(x− ξ, t)

]
u0(ξ)dξ

=

∫ 1

0

[
θα(x+ ξ, t) + θα(x− ξ, t)

]
xx
u0(ξ)dξ = wxx.
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Then by direct calculations, we get the following chain of equalities:

∂αt v1 = −2∂αt

(∫ t

0

D1−α
0+ (

∂θα
∂x

)(x, t− τ)g1(τ)dτ

)
= −2∂αt

(∫ t

0

∂θα
∂x

(x, t− τ)D1−α
0+ g1(τ)dτ

)
= −2

(∫ t

0

∂

∂x
(∂αt θα)(x, t− τ)D1−α

0+ g1(τ)dτ

)
= −2

(∫ t

0

∂

∂x
((θα)xx)(x, t− τ)D1−α

0+ g1(τ)dτ

)
= −2

(∫ t

0

D1−α
0+ (

∂θα
∂x

)xx(x, t− τ)g1(τ)dτ

)
= −2

(∫ t

0

(
∂D1−α

0+ θα

∂x
)xx(x, t− τ)g1(τ)dτ

)

=

(
−2

∫ t

0

∂(D1−α
0+ θα)

∂x
(x, t−τ)g1(τ)dτ

)
xx

= (v1)xx,

where we change of the order of the derivatives D1−α
0+ and ∂

∂x is guaranteed by the
uniformly convergence of the series for θα and its fractional derivatives.

Using the same technique, the equality

∂αt v2 = (v2)xx

can be derived, too.
Finally, it follows from the Duhamel principle for the fractional order differential

equations that was formulated in [30] that v3 is a solution to the problem


∂αt v − vxx = f(v) + γ(x, t), 0 < x < 1, 0 < t < T,

v(x, 0) = 0, 0 < x < 1,

v(0, t) = 0, −v(1, t) = 0, 0 ≤ t ≤ T.
(26)

By combining the above four equations, we arrive at the conclusion that the func-
tion (25) satisfies the fractional reaction-diffusion equation formulated in (24).

To verify the initial condition, the value t = 0 is substituted into the formula
(25). Simple calculations show that (25) satisfies the initial condition formulated
in (24).

To prove that the function given by (25) satisfies the boundary conditions from
(24), the formulas (16)-(18) from Lemma 2.4 are employed. We restrict ourselves
to the function v1; all other cases can be treated along the same lines.
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On the left boundary, x = 0, the formula (16) presented in Lemma 2.4 leads to
the equality

lim
x→0+

v1(x, t) = −2 lim
x→0+

∫ t

0

∂

∂x
(D1−α

0+ θα)(x, t−τ)g1(τ)dτ

= g1(x, t).

On the right boundary, x = 1, we apply the formula (18) of Lemma 2.4 to get the
desired boundary condition

lim
x→1−

v1(x, t) = −2

∫ t

0

D1−α
0+ ( lim

x→1+

∂

∂x
(θα(x, t−τ))g1(τ)dτ

= 0.

�

Now we consider the initial-boundary-value problems for the fractional reaction-
diffusion equation with the Neumann boundary conditions. In this case, the main
result is given in the following statement.

Theorem 3.2. Let u0, g1, and g2 be piecewise continuous functions on the
suitable intervals. Then a solution u of the initial-boundary-value problem for the
fractional reaction-diffusion equation

∂αt u− uxx = f(u) + γ(x, t), 0 < x < 1, 0 < t < T

u(x, 0) = u0(x), 0 < x < 1,

ux(0, t) = g1(t), −ux(1, t) = g2(t), 0 ≤ t ≤ T
(27)

can be represented in the form

u(x, t) = w(x, t) + v1(x, t) + v2(x, t) + v3(x, t),(28)

where

w(x, t) =

∫ 1

0

[
θα(x−ξ, t)− θα(x+ξ, t)

]
u0(ξ)dξ,

v1 = −2

∫ t

0

(D1−α
0+ θα)(x, t−τ)g1(τ)dτ,

v2 = 2

∫ t

0

(D1−α
0+ θα)(x−1, t−τ)g2(τ)dτ,

v3 =

∫ t

0

∫ 1

0

[
(D1−α

0+ θα)(x−ξ, t−τ)+(D1−α
0+ θα)(x+ξ, t−τ))

]
[f(u(ξ, τ)+γ(ξ, τ)]dξdτ.

The proof of Theorem 3.2 closely follows the lines of the proof of Theorem 3.1
and is omitted here.

Remark. In the formulas (25) and (28), the fractional θα-function was used
to deduce the integral equations of the Volterra type for solutions of the initial-
boundary-value problems with the Dirichlet and the Neumann boundary conditions
for a time-fractional reaction-diffusion equation. One advantage of this integral
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representation is that it can be used to solve some inverse problems for the time-
fractional reaction-diffusion equation by using a regularization via the Volterra
integral equations of the second kind as it has been done for the case of the con-
ventional reaction-diffusion equation in [28] (see also Chapter 13 of [3]).

4. Numerical results and plots

First we shortly describe a direct solver for numerical solution of the problem (24).
It is based on an implicit time step method for the fractional differential equations
with the Caputo fractional derivative that is similar to one presented in [15], but
takes into account the nonlinear source terms.

Let xi and tk be uniformly spaced grid points and ∆x and ∆t the space and the
time step sizes, respectively. Let us denote u(xi, tk) by uki . For the time-fractional
Caputo derivative, we use the standard approximation

∂αt u
k+1(x) ≈ 1

Γ(2− α)

k∑
j=0

bj
u(x, tk+1−j)− u(x, tk−j)

∆tα
,

where bj = (j + 1)1−α − j1−α, j = 0, 1, . . . , k. For the space derivative, we use the
usual central difference scheme. This leads to the following system of the nonlinear
equations

1

Γ(2− α)

k∑
j=0

bj
uk+1−j
i − uk−ji

∆tα
−
uk+1
i−1 − 2uk+1

i + uk+1
i+1

∆x2
= f(uki ) + γ(xi, tk)

for the numerical approximations uki of the solution u to the problem (24) at the
grid points.

Another approach for numerical solution of the problem (24) is based on nu-
merical solution of the nonlinear integral equation (25) for the solution to this
problem. This approach requires numerical evaluation of the function θα and its
fractional derivatives. For numerical evaluation of θα, the Wright function has to
be first evaluated that can be done e.g. using the algorithms suggested in [22].
For numerical evaluation of θα, we need to evaluate an infinite series with the
terms in form of the Wright function with different arguments and this task is not
trivial. Even in the classical case (α = 1), numerical evaluation of the θ-function is
a difficult problem, too. Summarizing, the second approach for numerical solution
of the problem (24) is a more computationally expensive option compared with
the one that employs the finite difference scheme. In Example 4.2, we apply these
two approaches for a particular case of the problem (24) and show that they lead
to the same numerical results.

In the rest of this section, two examples are presented to verify the numerical
approaches proposed above.
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Example 4.1. In this example, the problem
∂αt u− uxx = f(u) + γ(x, t), 0 < x < 1, 0 < t < 1

u(x, 0) = x2, 0 < x < 1,

ux(0, t) = 0, ux(1, t) = 2, 0 ≤ t ≤ 1

(29)

is numerically solved for the functions γ(x, t) = 1/Γ(3 − α)t2−α − (x2 + t2)2 −
2, f(u) = u2 and the derivative order α = 0.5 by employing the finite differ-
ence scheme described above. The problem (29) possesses a closed-form solution
u(x, t) = x2 + t2. The absolute errors of the numerical results obtained with
our finite difference scheme are shown in Figure 1. For the grid of the size
Nx × Nt = 100 × 100, the maximum error is equal to 0.0103. In Table 1, the
deviation of the numerical values from the exact value of the solution u at the
point (0.5, 0.5) that is equal to 1/8 is presented for different grid sizes.

Figure 1. Absolute errors of the numerical results in Example 4.1 .

Nx× Nt Error
20×20 0.8062e-3
40×40 0.2939e-3
60×60 0.1064e-3
80×80 0.0383e-3

Table 1. Deviations of the numerical results from the exact solution in Example 4.1.

Example 4.2. In this example, we compare the numerical results obtained by
the finite differences method with the results of the direct numerical integration
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using the representation (25) for the problem
∂αt u− uxx = 0, 0 < x < 1, 0 < t < 1

u(x, 0) = x(x− 1), 0 < x < 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1.

(30)

For simplicity, the problem (30) contains the homogeneous boundary conditions
and the representation (25) of the solution is as follows:

(31) u(x, t) =

∫ 1

0

[
θα(x−ξ, t)− θα(x+ξ, t)

]
ξ(ξ − 1)dξ,

where θα is defined as in the formula (13). The differences in numerical results
obtained by the finite differences method the by the direct integration method for the
solution u at the point (0.5, 0.5) are shown in Table 2 for different grid sizes. As we
see in Table 2, the direct integration method that is based on our new representation
(25) of the solution delivers about the same results as the finite difference method.

N Variations
100 0.5340e-3
200 0.3318e-3
400 0.2307e-3
800 0.1801e-3
1600 0.1549e-3

Table 2. Variations in numerical results obtained by the finite differences method the by the

direct integration method in Example 4.2.
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