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MONOGENIC FUNCTIONS

IN A FINITE-DIMENSIONAL ALGEBRA

WITH UNIT AND RADICAL

OF MAXIMAL DIMENSIONALITY

S. PLAKSA and V. SHPAKIVSKYI

(Communicated by A. Aibeche)

Abstract. We obtain a constructive description of monogenic functions taking

values in a finite-dimensional commutative algebra with unit and radical of maximal
dimensionality by means of holomorphic functions of the complex variable. We

prove that the mentioned monogenic functions have the Gateaux derivatives of all
orders, and analogues of classical theorems of the complex analysis hold for them:

the Cauchy integral theorem and the Cauchy integral formula, the Taylor expansion

and the Morera theorem.

1. Introduction

An effectiveness of the analytic function methods in the complex plane for research-
ing plane potential fields inspires mathematicians to develop analogous methods
for spatial fields.

Apparently, W. Hamilton (1843) made the first attempts to construct an algebra
associated with the three-dimensional Laplace equation

(1) ∆3u(x, y, z) :=

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
u(x, y, z) = 0

in that sense that components of hypercomplex functions satisfy the equation (1).
He constructed an algebra of noncommutative quaternions over the field of real
numbers R, and developing the hypercomplex analysis began.

C. Segre [1] constructed an algebra of commutative quaternions over the field
R that can be considered as a two-dimensional commutative algebra over the field
of complex numbers C.

A relation between spatial potential fields and analytic functions given in com-
mutative algebras was established by P. W. Ketchum [2] who shown that every
analytic function Φ(ζ) of the variable ζ = xe1 + ye2 + ze3 satisfies the equation
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(1) in the case where the elements e1, e2, e3 of a commutative algebra satisfy the
condition

(2) e2
1 + e2

2 + e2
3 = 0 ,

because

(3)
∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2 ≡ Φ′′(ζ) (e2
1 + e2

2 + e2
3) = 0 ,

where Φ′′ := (Φ′)′ and Φ′(ζ) is defined by the equality dΦ = Φ′(ζ)dζ.
We say that a commutative associative algebra A is harmonic (cf. [2, 3, 4, 5])

if in A there exists a triad of linearly independent vectors {e1, e2, e3} satisfying
the equality (2) provided that e2

k 6= 0 for k = 1, 2, 3. We say also that such a triad
{e1, e2, e3} is harmonic.

P. W. Ketchum [2] considered the C. Segre algebra of quaternions [1] as an
example of harmonic algebra.

I. P. Mel’nichenko [3] noticed that doubly differentiable in the sense of Gateaux
functions form the largest algebra of functions Φ satisfying identically the equalities
(3), where Φ′′ is the Gateaux second derivative of function Φ. He proved that there
exist exactly 3 three-dimensional harmonic algebras with unit over the field C only
(see [3, 4, 5]).

Constructive descriptions of monogenic (i.e. continuous and differentiable in
the sense of Gateaux) functions taking values in the mentioned three-dimensional
harmonic algebras by means holomorphic functions of the complex variable are
obtained in the papers [6, 7, 8]. Such descriptions make it possible to prove
the infinite differentiability in the sense of Gateaux of monogenic functions and
integral theorems for these functions that are analogous to classical theorems of
the complex analysis (see, e.g., [9, 10]).

Thus, monogenic functions Φ(ζ) in every three-dimensional harmonic algebra
satisfy the equalities (3) (we shall term such functions by monogenic potentials).

Furthermore, in the paper [6], we established the following characteristic ge-
ometric property of monogenic potentials taking values in the three-dimensional
harmonic algebra with two-dimensional radical: every monogenic potential given
in a convex domain can be continued to a monogenic potential given in a cylindrical
domain.

In this paper we generalize some results of the paper [6] to the case of monogenic
functions taking values in a commutative finite-dimensional algebra with unit and
radical of maximal dimensionality. In particular, we establish the mentioned char-
acteristic geometric property for monogenic potentials belonging to a class more
wide than one in the paper [6]. As in the papers [9, 10], we prove that analogues
of classical theorems of the complex analysis hold for monogenic potentials: the
Cauchy integral theorem and the Cauchy integral formula, the Taylor expansion
and the Morera theorem.
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2. MONOGENIC FUNCTIONS IN A FINITE-DIMENSIONAL
HARMONIC ALGEBRA

2.1. A finite-dimensional algebra with unit and radical of maximal di-
mensionality

Let An be a n-dimensional commutative associative Banach algebra over the field
C with the basis {1, ρ, ρ2, . . . , ρn−1}, where ρn = 0 and n ≥ 3.

The algebra An have the unique maximal ideal

I :=
{ n−1∑
k=1

λkρ
k : λk ∈ C

}
which is also the radical of An. Consider the linear functional f : An → C such
that the maximal ideal I is its kernel and f(1) = 1 .

Consider the following triad in An:

(4) e1 = 1, e2 = i+

n0∑
k=1

ρ2k , e3 =

n0∑
k=1

b2k−1 ρ
2k−1 ,

where n0 :=
[
n−1

2

]
and the coefficients b2k−1 are determined by the following

recurrence relations:

(5)

b1 = 1− i , b3 =
1

4
− 3

4
i ,

b2k−1 = − 1

2b1

(
k − 1 + 2i+

k−1∑
j=2

b2j−1b2k+1−2j

)
, k = 3, 4, . . . , n0 .

The coefficients b1, b3, . . . , b2n0−1 satisfy the equalities

k − 1 + 2i+

k∑
j=1

b2j−1b2k+1−2j = 0 , k = 1, 2, . . . , n0 ,

that imply the equality (2) for the triad (4). Thus, the triad (4) is harmonic.
Let us note that in the case n = 3 all harmonic triads in A3 are described in

Theorem 1.6 [5].
In what follows, ζ := xe1 + ye2 + ze3 and x, y, z ∈ R.
Let E3 := {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} be the linear span of vectors

e1, e2, e3 over the field R.
Inasmuch as the radical I contains all noninvertible elements of the algebra An,

an element ζ = xe1 +ye2 +ze3 ∈ E3 is noninvertible in An if and only if x = y = 0,
i.e. (x, y, z) is a point of the axis Oz in the space R3. Thus, the noninvertible
elements in E3 form the straight line Z := {ze3 : z ∈ R} .

2.2. Monogenic functions

Some hypercomplex functions given in the algebra An was considered by M. N. Roş-
culeţ [11, p. 85]. We shall consider functions given in domains of E3.
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Let Ω be a domain in R3. Associate with Ω the domain Ωζ := {ζ = xe1 + ye2 +
ze3 : (x, y, z) ∈ Ω} in E3.

We say that a continuous function Φ : Ωζ → An is monogenic in Ωζ if Φ is
differentiable in the sense of Gateaux in every point of Ωζ , i.e. if for every ζ ∈ Ωζ
there exists an element Φ′(ζ) ∈ An such that

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3.

Φ′(ζ) is the Gateaux derivative of the function Φ in the point ζ.
In turn, if Φ′ is a monogenic function in the domain Ωζ , then we denote the

Gateaux derivative of the function Φ′ by Φ′′ and call Φ′′ by the Gateaux second
derivative. Further, in the same way we define the Gateaux m-th derivative Φ(m).

Consider the decomposition of a function Φ : Ωζ → An with respect to the basis
{1, ρ, ρ2, . . . , ρn−1}:

(6) Φ(ζ) =

n−1∑
k=0

Wk(x, y, z) ρk ,

where by definition ρ0 := 1.
In the case where the functions Wk : Ω → C are R-differentiable in Ω, i.e. for

every (x, y, z) ∈ Ω,

Wk(x+ ∆x, y + ∆y, z + ∆z)−Wk(x, y, z) =
∂Wk

∂x
∆x+

∂Wk

∂y
∆y +

∂Wk

∂z
∆z+

+ o
(√

(∆x)2 + (∆y)2 + (∆z)2
)
, (∆x)2 + (∆y)2 + (∆z)2 → 0 ,

the function Φ is monogenic in the domain Ωζ if and only if the following Cauchy –
Riemann conditions are satisfied in Ωζ :

(7)
∂Φ

∂y
=
∂Φ

∂x
e2 ,

∂Φ

∂z
=
∂Φ

∂x
e3 .

Below, we shall show that all components Wk of the monogenic function (6) are
infinitely R-differentiable in Ω.

2.3. A constructive description of monogenic functions taking values in
the algebra An

We say that a domain Ωζ ⊂ E3 is convex in the direction of the straight line Z if
the congruent domain Ω ⊂ R3 contains every segment parallel to the axis Oz and
connecting two points (x1, y1, z1), (x2, y2, z2) ∈ Ω.

Let a domain Ωζ ⊂ E3 be convex in the direction of the straight line Z .
In what follows, ξ := f(ζ) ≡ x+ iy .
A constructive description of monogenic functions taking values in the algebra

A3 by means of holomorphic functions of the complex variable is obtained in the
paper [6]. More exactly, it is proved in the paper [6] that any monogenic function
Φ : Ωζ → A3 can be constructed in the form

(8) Φ(ζ) = F (ξ) +
(

(1− i)zF ′(ξ) + F1(ξ)
)
ρ1+
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+
(
yF ′(ξ)− iz2F ′′(ξ) + (1− i)zF ′1(ξ) + F2(ξ)

)
ρ2 ∀ ζ ∈ Ωζ

by means of three functions F , F1, F2 holomorphic in the domain D := f(Ωζ),
where f(Ωζ) is the image of Ωζ under the mapping f .

Below, we obtain a similar constructive description of any monogenic function
Φ : Ωζ → An.

Let A be the linear operator which assigns a holomorphic function F : D → C
to every monogenic function Φ : Ωζ → An by the formula

(9) F (ξ) = f(Φ(ζ)),

where ξ = f(ζ) ≡ x+ iy and ζ ∈ Ωζ . The value F (ξ) does not depend on a choice
of a point ζ for which f(ζ) = ξ that can be proved similarly to Lemma 1 [6] (see
also Lemma 1.1 [10] or Lemma 2.1 [12]).

Similar operators A which map monogenic functions taking values in certain
commutative algebras onto holomorphic functions of the complex variable are ex-
plicitly constructed in the papers [5, 6, 10, 12]. Furthermore, principal extensions
of holomorphic functions of the complex variable are used there as generalized in-
verse operators A(−1) satisfying the equality AA(−1)A = A. It was also established
for every monogenic function Φ that values of the monogenic function Φ−A(−1)AΦ
belong to a certain maximal ideal of given algebra. Finally, after describing all
monogenic functions taking values in the mentioned ideal, constructive descriptions
of monogenic functions by means of holomorphic functions of the complex variable
are obtained in the case of certain finite-dimensional algebras (see [6, 10, 12]).

To construct explicitly principal extensions of holomorphic functions of the
complex variable into the algebra An, we use the next auxiliary statements.

Lemma 2.1. The spectrum of element ζ = xe1 + ye2 + ze3 ∈ E3 ⊂ An consists
of the unique point t = x+ iy, and the decomposition of resolvent (t− ζ)−1 with
respect to the basis {1, ρ, ρ2, . . . , ρn−1} is of the form

(10) (t− ζ)−1 =

n−1∑
k=0

Akρ
k ∀ t ∈ C : t 6= x+ iy,

with the coefficients Ak determined by the following recurrence relations:

(11)

A0 =
1

t− ξ
, A1 = zb1(A0)2 ,

Ak = A0

(
y

k1∑
j=1

Ak−2j + z

k0∑
j=0

b2j+1Ak−2j−1

)
, k = 2, 3, . . . , n− 1,

where k1 := [ k2 ] , k0 :=
[
k−1

2

]
and b2j+1 are determined by the relations (5).

Proof. Let us determine the coefficients Ak ∈ C of decomposition (10). Taking
into account the decompositions (4) of elements of harmonic triad {e1, e2, e3} with
respect to the basis {1, ρ, ρ2, . . . , ρn−1}, we have

1 = (t− ζ)−1(t− ζ) = A0(t− ξ) +
(
A1(t− ξ)− zb1A0

)
ρ+
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+

n−1∑
k=2

(
Ak(t− ξ)− y

k1∑
j=1

Ak−2j − z
k0∑
j=0

b2j+1Ak−2j−1

)
ρk ,

whence we obtain the following system for finding the coefficientsA0, A1, . . . , An−1:

(12)

A0(t− ξ) = 1, A1(t− ξ)− zb1A0 = 0

Ak(t− ξ)− y
k1∑
j=1

Ak−2j − z
k0∑
j=0

b2j+1Ak−2j−1 = 0 .

The system (12) is solvable if t−ξ 6= 0, i.e. the spectrum of element ζ consists of
the unique point t = ξ , and the relations (11) follow from the equalities (12). �

Lemma 2.2. The coefficients (11) are represented in the form

(13) Ak =
1

(t− ξ)k+1

k∑
m=0

(t− ξ)m Pk,m(y, z) , k = 0, 1, . . . , n− 1,

where Pk,m is a homogeneous polynomial of the (k−m)-th power. Moreover, Pk,m
can be determined by the following relations:

P0,0(y, z) ≡ 1, Pk,0(y, z) = (zb1)k, Pk,k(y, z) ≡ 0 for k = 1, 2, . . . , n− 1 ,

(14)

Pk,m(y, z) = y

k−m−1∑
r=0

(zb1)r
k∑
p=1

Pk−2p−r,m−2p+1(y, z)+

+z

k−m−1∑
r=0

(zb1)r
k∑
p=1

b2p+1Pk−2p−r−1,m−2p(y, z) for k > m > 0 ,

where Pq,j(y, z) ≡ 0 for all q and j < 0 .

Proof. Let us prove the representation (13) by the mathematical induction. It
is clear that A0 is represented in the form (13) with P0,0(y, z) ≡ 1. Further,
supposing that all A0, A1, . . . , Ak−1 are represented in the form (13), we shall
prove that Ak is also represented in the form (13). Substituting the expressions
(13) of A0, A1, . . . , Ak−1 into the equality (11), we obtain

Ak =
1

t− ξ

(
y

k1∑
j=1

1

(t− ξ)k−2j+1

k−2j∑
r=0

(t− ξ)rPk−2j,r(y, z)+

+z

k0∑
j=0

b2j+1
1

(t− ξ)k−2j

k−2j−1∑
r=0

(t− ξ)rPk−2j−1,r(y, z)

)
=

=
1

(t− ξ)k+1

( k1∑
j=1

k−2j∑
r=0

(t− ξ)r+2j−1 yPk−2j,r(y, z)+

+

k0∑
j=0

k−2j−1∑
r=0

(t− ξ)r+2j zb2j+1Pk−2j−1,r(y, z)

)
.
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The last expression can be represented as (13) with Pk,k(y, z) ≡ 0 for k =
1, 2, . . . , n− 1 and

(15) Pk,m(y, z) = y

k∑
p=1

Pk−2p,m−2p+1(y, z) + z

k∑
p=1

b2p+1Pk−2p−1,m−2p(y, z)+

+zb1Pk−1,m(y, z) , k > m ≥ 0,

where we set by definition Pq,j(y, z) ≡ 0 for all q and j < 0 . Thus, Pk,m is a
homogeneous polynomial of the (k −m)-th power, and the representation (13) is
proved.

It follows from (15) that Pk,0(y, z) = zb1Pk−1,0(y, z) for k > 0 and, conse-
quently, Pk,0(y, z) = (zb1)k for k = 1, 2, . . . , n− 1 .

In the case k − 1 = m > 0 the equality (15) coincides with (14) because
Pm,m(y, z) ≡ 0.

To obtain the equality (14) in the case k− 1 > m > 0, primarily, we substitute
an expression Pk−1,m of the form (15) into the equality (15) and get

Pk,m(y, z) = y

k∑
p=1

Pk−2p,m−2p+1(y, z) + z

k∑
p=1

b2p+1Pk−2p−1,m−2p(y, z)+

+zb1

(
y

k∑
p=1

Pk−2p−1,m−2p+1(y, z) + z

k∑
p=1

b2p+1Pk−2p−2,m−2p(y, z)

)
+

+(zb1)2Pk−2,m(y, z) .

Now, the last equality coincides with (14) in the case k − 2 = m > 0 .
Next, in the case k − 2 > m > 0 we substitute an expression Pk−2,m of the

form (15) into the last equality and get

Pk,m(y, z) = y

2∑
r=0

(zb1)r
k∑
p=1

Pk−2p−r,m−2p+1(y, z)+

+z

2∑
r=0

(zb1)r
k∑
p=1

b2p+1Pk−2p−r−1,m−2p(y, z) + (zb1)3Pk−3,m(y, z) .

Finally, continuing similar operations, after k−m−1 steps we get the equality
(14). �

For instance, we adduce the polynomials Pk,m for k = m+ 1,m+ 2, . . . , n− 1
and m = 1, 2, 3:

Pk,1(y, z) = (k − 1) y(zb1)k−2,

Pk,2(y, z) =
1

2
(k − 2)(k − 3) y2(zb1)k−4 + (k − 2) zb3(zb1)k−3,

Pk,3(y, z) = (k − 3) y(zb1)k−4 + (k − 3)(k − 4) yzb3(zb1)k−5+

+
1

6
(k − 3)(k − 4)(k − 5) y3(zb1)k−6 .
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The following equality is an evident consequence of the equalities (10), (13):

(16) (t− ζ)−1 =

n−1∑
k=0

ρk
k∑

m=0

(t− ξ)m−k−1Pk,m(y, z) ∀ t ∈ C : t 6= x+ iy .

In the following theorem we construct the principal extension of holomorphic
function F : D → C into the cylindrical domain Πζ := {ζ ∈ E3 : f(ζ) ∈ D} in an
explicit form.

Theorem 2.3. Let a function F : D → C be holomorphic in a domain D ⊂ C .
Then the principal extension of F into the domain Πζ can be explicitly constructed
in the form

(17)
1

2πi

∫
Γ

F (t)(t− ζ)−1 dt =

n−1∑
k=0

ρk
k∑

m=0

Pk,m(y, z)
F (k−m)(ξ)

(k −m)!
,

where Γ is an arbitrary closed Jordan rectifiable curve in D that is homotopic to
the point ξ and embraces this point, and Pk,m is the same as in Lemma 2.2.

Proof. Using the equality (16), we obtain

1

2πi

∫
Γ

F (t)(t− ζ)−1 dt =

n−1∑
k=0

ρk
k∑

m=0

Pk,m(y, z)

2πi

∫
Γ

F (t)

(t− ξ)k−m+1
dt =

=

n−1∑
k=0

ρk
k∑

m=0

Pk,m(y, z)
F (k−m)(ξ)

(k −m)!
.

�

In the following theorem we describe all monogenic functions Φ : Ωζ → An by
means of principal extensions of holomorphic functions of the complex variable.

Theorem 2.4. If a domain Ωζ ⊂ E3 is convex in the direction of the straight
line Z , then any monogenic function Φ : Ωζ → An can be expressed in the form

(18) Φ(ζ) =

n−1∑
k=0

ρk
1

2πi

∫
Γ

Fk(t)(t− ζ)−1 dt ∀ζ ∈ Ωζ ,

where Fk : D → C is a holomorphic function in the domain D := f(Ωζ) and the
curve Γ is the same as in Theorem 2.3.

Proof. We set F0 := AΦ, i.e. the function F0 is defined by the formula (9),
where F = F0. It is easy to see that the monogenic function

Φ0(ζ) := Φ(ζ)− 1

2πi

∫
Γ

F0(t)(t− ζ)−1 dt

belongs to the kernel of the operator A, i.e. Φ0(ζ) ∈ I for all ζ ∈ Ωζ .
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Therefore, the function Φ0 is of the form

(19) Φ0(ζ) =

n−1∑
k=1

Vk(x, y, z) ρk ,

where Vk : Ω → C , and the Cauchy – Riemann conditions (7) are satisfied with
Φ = Φ0.

Substituting the expressions (4), (19) into the equalities (7) and taking into
account the uniqueness of decomposition of element of An with respect to the basis
{1, ρ, ρ2, . . . , ρn−1}, we get the following system for the functions V1, V2, . . . , Vn−1:

(20)

∂V1

∂y
= i

∂V1

∂x
,

∂V2

∂y
= i

∂V2

∂x
,

∂Vk
∂y

= i
∂Vk
∂x

+

k0∑
j=1

∂Vk−2j

∂x
, k0 :=

[
k−1

2

]
, k = 3, 4, . . . , n− 1 ,

∂V1

∂z
= 0 ,

∂Vk
∂z

=

k1∑
j=1

b2j−1
∂Vk−2j+1

∂x
, k1 :=

[
k
2

]
, k = 2, 3, . . . , n− 1 .

Taking into account Theorem 6 [13], we get from the first and the fourth equa-
tions of the system (20) that V1(x, y, z) ≡ F1(ξ), where F1 is a holomorphic func-
tion in the domain D.

Now, consider the function

Φ1(ζ) := Φ(ζ)− 1

2πi

∫
Γ

F0(t)(t− ζ)−1 dt− ρ 1

2πi

∫
Γ

F1(t)(t− ζ)−1 dt

which can be represented in the form

Φ1(ζ) =

n−1∑
k=2

Ṽk(x, y, z) ρk,

where Ṽk : Ω→ C .
Inasmuch as Φ1 is a monogenic function in Ωζ , the functions Ṽ2, Ṽ3, . . . , Ṽn−1

satisfy the system (20), where V1 ≡ 0, Vk = Ṽk for k = 2, 3, . . . , n− 1 . Therefore,

similarly to the function V1(x, y, z) ≡ F1(ξ), the function Ṽ2 satisfies the equations

∂Ṽ2

∂y
= i

∂Ṽ2

∂x
,

∂Ṽ2

∂z
= 0

and is of the form Ṽ2(x, y, z) ≡ F2(ξ), where F2 is a holomorphic function in the
domain D.
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In such a way, step by step, considering the functions

Φj(ζ) := Φ(ζ)−
j∑

k=0

ρk
1

2πi

∫
Γ

Fk(t)(t− ζ)−1 dt

for j = 2, 3, . . . , n− 2, we get the representation (18) of the function Φ. �

It is evident that the following statement follows from the equalities (18), (17).

Theorem 2.5. If a domain Ωζ ⊂ E3 is convex in the direction of the straight
line Z , then every monogenic function Φ : Ωζ → An can be continued to a function
monogenic in the domain Πζ .

The following statement is true for monogenic functions in an arbitrary domain
Ωζ .

Theorem 2.6. For every monogenic function Φ : Ωζ → An in an arbitrary

domain Ωζ ⊂ E3, the Gateaux m-th derivatives Φ(m) are monogenic functions in
Ωζ for all m.

Proof. Consider an arbitrary point ζ0 ∈ Ωζ and a ball fζ ⊂ Ωζ with the center
in the point ζ0. Inasmuch as fζ is a convex set, we have the equality (18) in fζ ,
where the integrals have the Gateaux m-th derivatives for all m that are continuous
functions in fζ . Thus, the Gateaux m-th derivative Φ(m) is a monogenic function
in fζ for any m. �

It follows from Theorem 2.6 that every monogenic function Φ(ζ) of the variable
ζ = xe1 + ye2 + ze3 ∈ Ωζ satisfies the three-dimensional Laplace equation due
to the equalities (2) and (3), i.e. Φ(ζ) is a monogenic potential. In this case, all
components Wk of the decomposition (6) are infinitely R-differentiable functions in
Ω, and, moreover, the real and imaginary parts of the functions W0,W1, . . . ,Wn−1

form 2n-tuple of three-dimensional harmonic functions in the domain Ω.
Using the integral expression (18) of monogenic function Φ : Ωζ → An in the

case where a domain Ωζ ⊂ E3 is convex in the direction of the straight line Z , we

obtain the following expression for the Gateaux m-th derivative Φ(m):

Φ(m)(ζ) =

n−1∑
k=0

ρk
m!

2πi

∫
Γ

Fk(t)
(

(t− ζ)−1
)m+1

dt ∀ζ ∈ Ωζ .

It follows from Theorem 2.5 that monogenic potentials Φ : Ωζ → An have the
following characteristic geometric property: being given in a convex domain Ωζ ,
they can be continued to monogenic potentials given in the cylindrical domain Πζ .

Combining the expressions (18) and (17), one can obtain a constructive de-
scription of any monogenic potential Φ : Ωζ → An by means of n holomorphic
functions that is similar to the constructive description (8) of monogenic poten-
tials Φ : Ωζ → A3. Comparing the form of expressions (18), (17) with the form
of expression (8), it is easy to see that monogenic potentials Φ : Ωζ → An form a
class more wide than the class of monogenic potentials Φ : Ωζ → A3.
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2.4. Integral theorems for monogenic functions

In the paper [14], for functions differentiable in the sense of Lorch in an arbitrary
convex domain of a commutative associative Banach algebra, some properties sim-
ilar to properties of holomorphic functions of complex variable (in particular, the
Cauchy integral theorem and the Cauchy integral formula, the Taylor expansion
and the Morera theorem) are established. The convexity of the domain in the
mentioned results from [14] is withdrawn by E. K. Blum [15].

In this paper we establish similar results for monogenic functions Φ : Ωζ → An
given only in a domain Ωζ of the linear span E3 instead of domain of whole algebra.

Let us note that a priori the differentiability of the function Φ in the sense of
Gateaux is a restriction weaker than the differentiability of this function in the
sense of Lorch. Moreover, note that the Cauchy integral formula established in the
papers [14, 15] is not applicable to a monogenic function Φ : Ωζ → An because
it deals with an integration along a curve on which the function Φ is not given,
generally speaking.

Let γ be a Jordan rectifiable curve in R3. We say that the congruent curve
γζ := {ζ = xe1 + ye2 + ze3 : (x, y, z) ∈ γ} is a Jordan rectifiable curve in E3.

For a continuous function Φ : γζ → An of the form (6), where (x, y, z) ∈ γ and
Wk(x, y, z) = Uk(x, y, z) + iVk(x, y, z) with real-valued functions Uk, Vk, we define
an integral along the curve γζ by the equality∫

γζ

Φ(ζ) dζ :=

n−1∑
k=0

ρk
∫
γ

Uk(x, y, z) dx+

n−1∑
k=0

e2 ρ
k

∫
γ

Uk(x, y, z) dy+

+

n−1∑
k=0

e3 ρ
k

∫
γ

Uk(x, y, z) dz + i

n−1∑
k=0

ρk
∫
γ

Vk(x, y, z) dx+

+i

n−1∑
k=0

e2 ρ
k

∫
γ

Vk(x, y, z) dy + i

n−1∑
k=0

e3 ρ
k

∫
γ

Vk(x, y, z) dz ,

where dζ := e1dx+ e2dy + e3dz .
We understand a triangle 4 in R3 as a plane figure bounded by three line

segments connecting three its vertices. Denote by ∂4 the boundary of triangle 4
in relative topology of its plane.

Let Ωζ be a domain in E3 and Φ : Ωζ → An be a monogenic function in Ωζ .
For every triangle 4 ⊂ Ω, using the classic Stokes formula and the equalities (7),
we obtain immediately the following equality:

(21)

∫
∂4ζ

Φ(ζ) dζ = 0 ,

where ∂4ζ := {ζ = xe1 + ye2 + ze3 : (x, y, z) ∈ ∂4}.
Now, we can prove the following theorem similarly to the proof of Theorem 3.2

[15].
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Theorem 2.7. Let Φ : Ωζ → An be a monogenic function in a domain Ωζ ⊂ E3.
Then for every closed Jordan rectifiable curve γζ homotopic to a point in Ωζ , the
following equality holds: ∫

γζ

Φ(ζ) dζ = 0 .

For functions taking values in the algebra An, the following Morera theorem
can be established in the usual way.

Theorem 2.8. If a function Φ : Ωζ → An is continuous in a domain Ωζ ⊂ E3

and satisfies the equality (21) for every triangle 4 ⊂ Ω, then the function Φ is
monogenic in the domain Ωζ .

Now, consider a domain Ωζ which is convex in the direction of the straight
line Z . Let ζ0 := x0e1 + y0e2 + z0e3 and (x0, y0, z0) ∈ Ω. In a neighborhood
of (x0, y0, z0) contained in Ω , let us take a circle C with the center at the point
(x0, y0, z0). We assume that the circle C embraces the straight line {(x0, y0, z) :
z ∈ R}.

We say that a curve γζ ⊂ Ωζ embraces once the straight line {ζ0 + ze3 : z ∈ R}
if the congruent curve γ is homotopic to the circle C in the domain Ω\{(x0, y0, z) :
z ∈ R}.

The following theorem can be proved in such a way as Theorem 5 [9] (see also
Theorem 1.14 [10]).

Theorem 2.9. Let a domain Ωζ be convex in the direction of the straight line
Z and Φ : Ωζ → An be a monogenic function in the domain Ωζ . Then for every
point ζ0 ∈ Ωζ the following equality is true:

(22) Φ(ζ0) =
1

2πi

∫
γζ

Φ(ζ) (ζ − ζ0)
−1
dζ,

where γζ is an arbitrary closed Jordan rectifiable curve in Ωζ that embraces once
the straight line {ζ0 + ze3 : z ∈ R}.

Using the formula (22), in the usual way, we obtain the Taylor expansion

(23) Φ(ζ) =

∞∑
k=0

ck (ζ − ζ0)k, ck ∈ An,

of any monogenic function Φ : Ωζ → An in a certain neighborhood of every point
ζ0 belonging to an arbitrary domain Ωζ ⊂ E3.

Thus, the following theorem giving different equivalent definitions of monogenic
functions Φ : Ωζ → An is true:

Theorem 2.10. A function Φ : Ωζ → A3 is a monogenic in an arbitrary
domain Ωζ ⊂ E3 if and only if one of the following conditions is satisfied:

(I) the components W1,W2, . . . ,Wn−1 of the decomposition (6) of the function
Φ are R-differentiable in Ω and the conditions (7) are satisfied in the domain Ωζ ;
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(II) the function Φ is continuous in Ωζ and satisfies the equality (21) for every
triangle 4 ⊂ Ω;

(III) for every ζ0 ∈ Ωζ there exists a neighborhood, in which the function Φ is
expressed as the sum of the power series (23);

(IV) in every ball fζ ⊂ Ωζ the function Φ is expressed in the form (18), where
F0, F1, . . . , Fn−1 are some holomorphic functions in the domain D := f(fζ) and
the curve Γ is the same as in Theorem 2.3.
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